1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
|
#advent of code 2020
#day 20
#I struggled a lot but somehow managed to finish without any help
#love the idea, seems extremely easy at first but gets progressively more complex
#in summary:
#for each tile, for each side of the tile, find the fitting tile
#the corners will have 2 neighbours, the tiles at edges will have 3 neighbours
#assign coordinates to corners and edges
#with the outer tiles assigned, we can assign the inner tiles
#after that, check how is each tile setup now and in which direction the sides should be facing
#adjust accordingly
#assumptions:
# whole image is a square
# the monster can appear in any orientation (which seems false, at least for my input)
# there is exactly one match for each side of a tile
#code could use some cleanup so I'll revisit this in the future
#right now I'm happy I trimmed it down to 1/3 of what it was when solved
import math
def DirectionalRotating(tileID,rotdir):
if rotdir > 0: #counterclockwise i think
return [ [ tiles[tileID][r][c] for r in range(len(tiles[tileID][c])) ] for c in range(len(tiles[tileID])-1,-1,-1) ];
else: #clockwise i hope
return [ [ tiles[tileID][r][c] for r in range(len(tiles[tileID][c])-1,-1,-1) ] for c in range(len(tiles[tileID])) ];
def rotating(tileID):
return [ [ tiles[tileID][r][c] for r in range(len(tiles[tileID][c])-1,-1,-1) ] for c in range(len(tiles[tileID])) ];
def flipping(tileID,side):
if side == 0: #left to right (probably)
return [ [ tiles[tileID][c][r] for r in range(len(tiles[tileID][c])-1,-1,-1) ] for c in range(len(tiles[tileID])) ];
else: #up to down (i think)
return [ [ tiles[tileID][c][r] for r in range(len(tiles[tileID][c])) ] for c in range(len(tiles[tileID])-1,-1,-1) ];
#this function was my first attempt at solving this and somehow it's vital
#which probably means that my solution is borderline hardcoded
def InitialMatching(MatchTile, MatchTileEdge, RevTile, RevTileEdge):
fuck = dict();
fuck[0] = 2;
fuck[1] = 3;
fuck[2] = 0;
fuck[3] = 1;
matchUP = [tiles[MatchTile][0][c] for c in range(0,size)];
matchDOWN = [tiles[MatchTile][size-1][c] for c in range(0,size)];
matchLEFT = [tiles[MatchTile][c][0] for c in range(0,size)];
matchRIGHT = [tiles[MatchTile][c][size-1] for c in range(0,size)];
matchEdges = [matchUP,matchRIGHT,matchDOWN,matchLEFT];
steps = 0;
while (RevTileEdge+steps)%4 != fuck[MatchTileEdge]:
tiles[RevTile] = rotating(RevTile);
steps += 1;
revUP = [tiles[RevTile][0][c] for c in range(0,size)];
revDOWN = [tiles[RevTile][size-1][c] for c in range(0,size)];
revLEFT = [tiles[RevTile][c][0] for c in range(0,size)];
revRIGHT = [tiles[RevTile][c][size-1] for c in range(0,size)];
revEdges = [revUP,revRIGHT,revDOWN,revLEFT];
if matchEdges[MatchTileEdge] != revEdges[(MatchTileEdge+2)%4]:
tiles[RevTile] = flipping(RevTile,MatchTileEdge%2);
#find pattern PattList inside the image img
def FindPattern(img,PattList):
MatchingPixels = set();
amount = sum([imline.count("#") for imline in PattList]);
for iy in range(len(img) - len(PattList) ):
for ix in range(len(img[iy]) - len(PattList[0]) ):
IsValid = True;
subset = set();
for ply,pll in enumerate(PattList):
for plx, plc in enumerate(pll):
if plc == " ": continue;
IsValid = plc == img[iy+ply][ix+plx] == "#";
if IsValid:
subset.add((iy+ply,ix+plx))
else:
break;
if not IsValid: break;
if amount == len(subset): MatchingPixels.update(subset);
return MatchingPixels;
#create all flipped and rotated version of pattern, return them in a list
def MonsterFlip(patt):
Monsters = [];
for rotation in range(4):
Monsters.append(patt);
#flip
patt = [ [patt[c][r] for r in range(len(patt[c])-1,-1,-1)] for c in range(len(patt)) ];
Monsters.append(patt);
#rotate
if rotation%2 == 0: #flips must alternate between horizontal and vertical
patt = [ [patt[r][c] for r in range(len(patt)-1,-1,-1)] for c in range(len(patt[0])) ];
else:
patt = [ [patt[r][c] for r in range(len(patt))] for c in range(len(patt[0])-1,-1,-1) ];
return Monsters;
tiles = dict();
size = 0;
PuzzleInput = open("20.in","r").read();
for pi in PuzzleInput.split("\n\n"):
lines = pi.split("\n");
value = int(lines[0][5:9]);
tiles[value] = [];
for y,line in enumerate(lines[1:]):
if len(line) == 0: continue;
tiles[value].append(list(line));
size = len(line);
# ^ 0
# > 1
# v 2
# < 3
directions = [(0,size,1), (size-1,-1,-1)];
options = dict();
for tile1 in tiles:
options[tile1] = [];
UP1 = [tiles[tile1][0][c] for c in range(0,size)];
DOWN1 = [tiles[tile1][size-1][c] for c in range(0,size)];
LEFT1 = [tiles[tile1][c][0] for c in range(0,size)];
RIGHT1 = [tiles[tile1][c][size-1] for c in range(0,size)];
edges1 = [UP1,RIGHT1,DOWN1,LEFT1];
for tile2 in tiles:
if tile1==tile2: continue;
UP2 = [tiles[tile2][0][c] for c in range(0,size)];
DOWN2 = [tiles[tile2][size-1][c] for c in range(0,size)];
LEFT2 = [tiles[tile2][c][0] for c in range(0,size)];
RIGHT2 = [tiles[tile2][c][size-1] for c in range(0,size)];
edges2 = [UP2,RIGHT2,DOWN2,LEFT2];
for i2 in range(len(edges2)):
for i1 in range(len(edges1)):
if edges1[i1] == edges2[i2] or edges1[i1] == [edges2[i2][rev] for rev in range(size-1,-1,-1)]:
InitialMatching(tile1,i1,tile2,i2);
options[tile1].append(tile2);
part1 = 1;
corners = [];
Imgedges = [];
for ot in options:
if len(options[ot]) == 2: corners.append(ot);
if len(options[ot]) == 3: Imgedges.append(ot);
for tid in corners:
part1 *= tid;
print("part 1 =",part1);
############################################################################################################################
TotalTiles = len(tiles);
WholeImageSize = int(math.sqrt(TotalTiles));
coordinates = dict();
queue = [corners[0]];
coordinates[corners[0]] = (0,0)
fitted = set();
imgdirs = dict();
imgdirs[0] = (1,0);
imgdirs[1] = (0,1);
imgdirs[2] = (-1,0);
imgdirs[3] = (0,-1);
#assigning the tiles to coordinates based on neighbours
#first 3 corners and 2 edges
SeparateQueue = [];
coordinates[options[corners[0]][0]] = (0,1);
coordinates[options[corners[0]][1]] = (1,0);
queue = [];
queue.extend(options[corners[0]]);
while queue:
#print(len(queue));
t = queue.pop();
if t in fitted: continue;
ty,tx = coordinates[t];
for fit in options[t]:
if fit in coordinates: continue;
if fit in Imgedges :
queue.append(fit);
dx = 0 + 1*(ty==0);
dy = 0 + 1*(tx==0);
coordinates[fit] = (ty+dy,tx+dx);
elif fit in corners:
dx = 0 + 1*(ty==0);
dy = 0 + 1*(tx==0);
coordinates[fit] = (ty+dy,tx+dx);
else:
SeparateQueue.append(fit);
#last corner and 2 edges
queue = [];
for cor in corners[1:]:
if cor in coordinates:
WasFitted = [wf for wf in options[cor] if wf in coordinates][0];
NotFitted = [wf for wf in options[cor] if wf not in coordinates][0];
cory,corx = coordinates[cor];
nfx = 0 + corx*(corx==WholeImageSize-1) + 1*(corx!=WholeImageSize-1) ;
nfy = 0 + cory*(cory==WholeImageSize-1) + 1*(cory!=WholeImageSize-1) ;
coordinates[NotFitted] = (nfy,nfx);
queue.append(NotFitted);
while queue:
t = queue.pop();
if t in fitted: continue;
ty,tx = coordinates[t];
for fit in options[t]:
if fit in coordinates: continue;
dx = 0 + 1*(ty==WholeImageSize-1);
dy = 0 + 1*(tx==WholeImageSize-1);
if fit in Imgedges :
queue.append(fit);
coordinates[fit] = (ty+dy,tx+dx);
elif fit in corners:
coordinates[fit] = (ty+dy,tx+dx);
else:
SeparateQueue.append(fit);
#filling in the rest
while len(coordinates) != len(tiles):
NewQueue = [til for til in tiles if til not in coordinates];
for item in reversed(NewQueue):
NotMatched = [nm for nm in options[item] if nm not in coordinates];
Matched = [nm for nm in options[item] if nm in coordinates];
CordsOfMatched = [coordinates[com] for com in Matched];
if len(Matched) == 2:
p0 = CordsOfMatched[0];
p1 = CordsOfMatched[1];
dpy = p0[0]-p1[0];
dpx = p0[1]-p1[1];
if dpy > 1 or dpy < -1: continue;
if dpx > 1 or dpx < -1: continue;
if dpy*dpx < 0:
o1 = (min(p0[0],p1[0]) , min(p0[1],p1[1]));
o2 = (max(p0[0],p1[0]) , max(p0[1],p1[1]));
else:
o1 = (max(p0[0],p1[0]) , min(p0[1],p1[1]));
o2 = (min(p0[0],p1[0]) , max(p0[1],p1[1]));
#check if the possible points are within image boundaries, same check for elifs below
v1 = o1[0] in range(0,WholeImageSize) and o1[1] in range(0,WholeImageSize);
v2 = o2[0] in range(0,WholeImageSize) and o2[1] in range(0,WholeImageSize);
if not v1 and not v2:
continue;
elif o1 in coordinates.values() and v2 and o2 not in coordinates.values():
coordinates[item] = o2;
elif o2 in coordinates.values() and v1 and o1 not in coordinates.values():
coordinates[item] = o1;
elif len(Matched) == 3:
comYs = set( [com[0] for com in CordsOfMatched] );
comXs = set( [com[1] for com in CordsOfMatched] );
if len(comYs) > len(comXs):
oy = min(comYs)+1;
ox = [xxx[1] for xxx in CordsOfMatched if xxx[0] != oy ][0];
else:
ox = min(comXs)+1;
oy = [xxx[0] for xxx in CordsOfMatched if xxx[1] != ox ][0];
o1 = (oy,ox);
v1 = o1[0] in range(0,WholeImageSize) and o1[1] in range(0,WholeImageSize);
if o1 not in coordinates.values() and v1:
coordinates[item] = o1;
elif len(Matched) == 4:
comYs = set( [com[0] for com in CordsOfMatched] );
comXs = set( [com[1] for com in CordsOfMatched] );
oy = min(comYs)+1;
ox = min(comXs)+1;
o1 = (oy,ox);
v1 = o1[0] in range(0,WholeImageSize) and o1[1] in range(0,WholeImageSize);
if o1 not in coordinates.values() and v1:
coordinates[item] = o1;
InversedCoords = dict();
for cord in coordinates:
InversedCoords[coordinates[cord]] = cord;
YrangeLow = min([ICpoint[0] for ICpoint in InversedCoords]);
YrangeHigh = max([ICpoint[0] for ICpoint in InversedCoords]);
for tile1 in tiles:
options[tile1] = [];
UP1 = [tiles[tile1][0][c] for c in range(0,size)];
DOWN1 = [tiles[tile1][size-1][c] for c in range(0,size)];
LEFT1 = [tiles[tile1][c][0] for c in range(0,size)];
RIGHT1 = [tiles[tile1][c][size-1] for c in range(0,size)];
edges1 = [UP1,RIGHT1,DOWN1,LEFT1];
for tile2 in tiles:
if tile1==tile2: continue;
UP2 = [tiles[tile2][0][c] for c in range(0,size)];
DOWN2 = [tiles[tile2][size-1][c] for c in range(0,size)];
LEFT2 = [tiles[tile2][c][0] for c in range(0,size)];
RIGHT2 = [tiles[tile2][c][size-1] for c in range(0,size)];
edges2 = [UP2,RIGHT2,DOWN2,LEFT2];
for i2 in range(len(edges2)):
for i1 in range(len(edges1)):
if edges1[i1] == edges2[i2] or edges1[i1] == [edges2[i2][rev] for rev in range(size-1,-1,-1)]:
InitialMatching(tile1,i1,tile2,i2);
options[tile1].append(tile2);
RequiredSides = dict();
for y in range(1+max([Ymax[0] for Ymax in InversedCoords])):
for x in range(1+max([Xmax[1] for Xmax in InversedCoords])):
tile1 = InversedCoords[(y,x)]
RequiredSides[tile1] = dict();
UP1 = [tiles[tile1][0][c] for c in range(0,size)];
DOWN1 = [tiles[tile1][size-1][c] for c in range(0,size)];
LEFT1 = [tiles[tile1][c][0] for c in range(0,size)];
RIGHT1 = [tiles[tile1][c][size-1] for c in range(0,size)];
edges1 = [UP1,RIGHT1,DOWN1,LEFT1];
for di,dd in enumerate([(-1,0),(0,1),(1,0),(0,-1)]):
dy,dx = dd;
if (y+dy,x+dx) not in InversedCoords: continue;
tile2 = InversedCoords[ (y+dy,x+dx) ];
UP2 = [tiles[tile2][0][c] for c in range(0,size)];
DOWN2 = [tiles[tile2][size-1][c] for c in range(0,size)];
LEFT2 = [tiles[tile2][c][0] for c in range(0,size)];
RIGHT2 = [tiles[tile2][c][size-1] for c in range(0,size)];
edges2 = [UP2,RIGHT2,DOWN2,LEFT2];
for i1 in range(len(edges1)):
if edges1[i1] in edges2 or [edges1[i1][rev] for rev in range(size-1,-1,-1)] in edges2:
RequiredSides[tile1][i1] = di;
break;
CorrectlyFacing = [face for face in RequiredSides[tile1] if RequiredSides[tile1][face] == face ];
IncorrectFacing = [face for face in RequiredSides[tile1] if face not in CorrectlyFacing ];
sidetest = [(4-(RequiredSides[tile1][xddd] - xddd))%4 for xddd in RequiredSides[tile1]];
if sidetest.count(sidetest[0]) == len(sidetest):
if sidetest[0] == 1:
for rotato in range(sidetest[0]):
tiles[tile1] = DirectionalRotating(tile1, IncorrectFacing[0] - RequiredSides[tile1][IncorrectFacing[0]] );
else:
for rotato in range(sidetest[0] ):
tiles[tile1] = DirectionalRotating(tile1, RequiredSides[tile1][min(IncorrectFacing)] - min(IncorrectFacing) );
elif sidetest.count(0) + sidetest.count(2) == len(sidetest):
WhichToFlip = set([xddd%2 for xddd in RequiredSides[tile1] if (4-(RequiredSides[tile1][xddd] - xddd))%4 == 2]);
for wtflip in WhichToFlip:
tiles[tile1] = flipping(tile1,(wtflip+1)%2);
elif sidetest.count(1) + sidetest.count(3) == len(sidetest):
tiles[tile1] = flipping(tile1,1);
tiles[tile1] = DirectionalRotating(tile1, min(IncorrectFacing) - RequiredSides[tile1][min(IncorrectFacing)] );
image = [];
for y in range(1+max([Ymax[0] for Ymax in InversedCoords])):
ImageLine = [ [] for s in range(1,size-1)];
for x in range(1+max([Xmax[1] for Xmax in InversedCoords])):
for tileY, _ in enumerate(tiles[InversedCoords[(y,x)]]):
if tileY >= size-2: continue;
ImageLine[tileY] += tiles[InversedCoords[(y,x)]][tileY+1][1:-1] ;
image += ImageLine;
#from puzzle description
monster = ''' #
# ## ## ###
# # # # # # '''
#turn monster into list
pattern = [];
for m in monster.split("\n"):
pattern.append(list(m));
#######
hashes = sum([imline.count("#") for imline in image]); # all hashes in the image
PartOfMonster = set();
#iterate over alle combinations of monster pattern, count the matching tiles
for monflip in MonsterFlip(pattern):
PartOfMonster.update(FindPattern(image,monflip));
part2 = hashes - len(PartOfMonster); #water roughness
print("part 2 =",part2);
#print all monsters
#for imy,imline in enumerate(image):
# for imx, imchar in enumerate(imline):
# if (imy,imx) in PartOfMonster:
# print("O",end="")
# else:
# print(imchar,end="")
# print();
|